HEAT TRANSFER AT LARGE PRANDTL NUMBERS IN
THE WALL REGION WITH PRESSURIZATION
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A steady turbulent flow is parallel to an infinite permeable plane wall through which is in-
jected a liquid having the same physical properties as the liquid of the main flow. The
generalized hypothesis of localizability of turbulent transport is used for analysis. The
Stanton number is calculated in a wide range of variation of the Prandtl number for differ-
ent values of the Reynolds number and a parameter characterizing pressurization.

Liquids, representing organosilicon compounds, are widely used at present in various areas of the
national economy. They are also used [1] as damping liquids in special coatings intended for quenching
turbulent fluctuations for the purpose of reducing friction during movement of bodies in water. The Prandtl
numbers of such liquids reach an order of a thousand owing to low thermal diffusivity, whereas their vis-
cosity coefficients change within very wide limits [2] and permit completely the existence of a turbulent
flow regime at a turbulent flow regime at moderately high speeds.

Therefore, a calculation of heat transfer in a turbulent flow at large Prandtl numbers and the de-
crease of heat transfer at the wall are of practical value.

We will consider the turbulent flow of an incompressible liquid parallel to an infinite permeable plane
wall, A liquid having the same physical properties as the liquid of the main flow is injected through the
wall.

It is assumed that the injection velocity of the liquid is small in order to provide the stable existence
of a turbulent flow. For the values of the Prandtl number being considered the velocity of pressurization
has an order of magnitude not greater than the order of the transverse velocities of the flow. This permits
us to use in the analysis the hypothesis of localizability of turbulent transport, generalized by L. G. Loits-
yanskii [3] for this case, when the molecular and molar processes in the wall region are quantitatively
comparable to one another, The generalized hypothesis of localizability permits obtaining the main char-
acteristics of the flow in a continuous form as integrals which we can easily calculate numerically by as-
signing a certain value of the parameter characterizing pressurization,

The flow is assumed steady in a dynamic and thermal sense. The equations of momentum and energy
for the flow being considered have the form
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The equation of continuity gives
dv/oy = 0, (3)

i.e., the transverse velocity component is constant across the flow, v = const = vy, where vy, is the in-
jection velocity of the liquid through the wall, Consequently, Egs. (1) and (2) can be written so:
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The use of the quantitative expression of the hypothesis of localizability enables us to write Eqs. (6)
and (7) in the form
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In this case we mean by R the expression

R=Y_E & (10)

or the expression more common from the standpoint of the localizability hypothesis
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The quantity f(R) represents the characteristic function of the interaction of molecular and molar exchange.
In the entire flow region f(R) was used in the form [3]

f=1+R[l—exp(—aR)], a=0.0125 [4]. (12)
In universal coordinates Eqgs. (8)-(10) are transformed to
1o = l f(R), (13)
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@ =ufvy; Y=0/0,; 0x = q,/pc,0, (16)
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B = vw/ vx is the parameter characterizing pressurization,
The solution of Egs. (13)-(15) in a parametric form with R as a parameter has the form
R
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Thus the universal distribution of velocities ¢ and the universal distribution of the temperatures i can
be calculated numerically by assigning certain values of the parameter 3.
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Fig. 1. Stanton number vs Prandtl number and pressurization parameter for Reynolds number:
a) 10% 1) 2.5-10% ¢) 5.10% ¢)5-10% 1)8=0; 2)0.01; 3) 0.002.

The Stanton number is usually used as the total characteristic of the heat-transfer process
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where u,, and 0, are the average values of the velocity and temperature. According o (16) and (19)
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The Reynolds number, formed with respect to the average velocity u,, and pipe diameter d, is deter-
mined by the relation

Re = 20,9, , =50, v Rif (R) 23)
(n, is the quantity n on the axis of the pipe).
Using Egs. (20)-(22), we express the Stanton number by the integral
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where ¢ and ¢ are determined respectively by Eqs, (17) and (18),

Thus we calculated the Stanton number for different values of the Reynolds number and parameter 3,
the Prandtl number having varied in a wide range from 5 to 1000, The curves of the Stanton number as a
function of the Prandtl number for a given Reynolds number and g = 0.001 and 0,002 that were obtained are
presented in Fig. la, b, c¢. Analogous curves obtained in [4] in the absence of injection of a liquid through
the wall, i.e., for 8 =0, are also presentedthere, The circles mark the experimental data obtained by
Deissler [5] on heat transfer in a turbulent flow of liquids with large Prandtl numbers in the absence of
pressurization, i.e.,, forg =0,

We see from the figure that, by means of a very small injection of liquid through the wall, it is pos-
sible to reduce heat transfer considerably, especially in liquids whose Prandtl numbers are sufficiently
large.
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As far as we know there are no experimental data on heat transfer during turbulent flow of liquids
with large Prandtl numbers in the presence of pressurization.

é:_o:lm::b S 3 =
-3 A <

Q

p

Vw

!

A

Pr = ucp/?\;
Re = uavd/v.

[N

NOTATION

arethelongitudinal and transverse components of the average velocity of the flow;
is the transverse coordinate;

is the temperature of the flow;

is the difference between the tempgrature of the surface and flow;
is the density of liquid;

arethe dynamic and kinematic viscosities of liquid;

is the turbulent mixing coefficient;

arethe shear stress and shear stress at wall;

is the heat flux;

is the heat flux through wall;

is the heat capacity;

is the injection velocity of liquid through wall;

is the mixing length » = 0.4;

is the thermal conductivity of liquid;
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